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1 Introduction

Three-dimensional extended supersymmetric gauge theories attract much attention due to
their remarkable relationships with string/M theory. In this paper we develop a generic
procedure for constructing quantum effective actions of N'=3, d=3 supergauge theories in
terms of unconstrained harmonic superfields.

The harmonic superspace approach [1-4] is a powerful tool for studying field theo-
ries with extended supersymmetry in diverse dimensions. In particular, the N'=3, d=3



harmonic superspace was introduced in [5]. Recently [6], we applied this approach to the
three-dimensional A'=3 supersymmetric Chern-Simons and matter models which are build-
ing blocks of the N'=6 and N'=8 supersymmetric Aharony-Bergman-Jafferis-Maldacena
(ABJM) [7] and Bagger-Lambert-Gustavsson (BLG) [8] theories. The manifestly N'=3
supersymmetric off-shell formulation of these theories was constructed for the first time.
The ABJM and BLG models are currently of great interest, because they describe the
world-volume dynamics of M2 branes in superstring theory and so open a way for studying
the AdS,/CFTj3 correspondence.

Superspace formulations are most advantageous for studying the quantum aspects of
supersymmetric field theories because they make manifest one or another amount of the
underlying supersymmetries. Based on this general feature, it is natural to expect that
the N'=3, d=3 harmonic superspace approach may prove very fruitful for quantum compu-
tations in the N'=6 or A'=8 superconformal models including the ABJM and BLG ones.
However, there is very limited experience in quantizing N'=3, d=3 Chern-Simons or matter
models directly in harmonic superspace [5] (as opposed to e.g. N'=2, d=4 supersymmetric
theories [2-4]). The aim of the present paper is to partially fill this gap by working out the
basic steps of the appropriate quantization procedure.

We develop the background field method for a general N'=3 Chern-Simons matter
theory and use it to prove a nonrenormalization theorem which guarantees the quantum
finiteness of such a theory. We derive the superfield propagators in these models and
use them for the calculation of leading supergraphs with two and four external gauge and
matter legs. These diagrams bring to light some interesting facts about the quantum theory.
First, the leading quantum correction in the massive charged hypermultiplet generates
the N'=3 super Yang-Mills action rather than the Chern-Simons term. This result is
rather unexpected in comparison with /=0 three-dimensional electrodynamics in which a
single massive fermion generates the Chern-Simons action as a leading contribution to the
effective action [9]. Second, the four hypermultiplet one-loop diagram produces a quartic
hypermultiplet self-interaction. Like in the four-dimensional case [10], such a contribution
is possible only in a model of massive charged hypermultiplets, with the hypermultiplet
mass being induced by the central charge of the N'=3, d=3 Poincaré superalgebra.

The paper is organized as follows. In section 2 we review the formulation of the N'=3
hypermultiplet and Chern-Simons models in A'=3 harmonic superspace. In section 3 we
develop the background field method for a general N'=3 Chern-Simons matter theory,
prove the nonrenormalization theorem and discuss the general structure of the quantum
effective action. In section 4 we consider some one-loop quantum computations in the case
of vanishing background field. In section 5 we study the realization of N'=3 supersymmetry
with a central charge. This leads us to the massive hypermultiplet model, whose quantum
aspects we consider as well. The final section 6 contains a discussion of our results as
well as prospects of their further applications to three-dimensional models with extended
supersymmetry. In the appendix we collect technical details of the N'=3, d=3 harmonic
superspace approach.



2 Field models in N'=3, d=3 harmonic superspace

The basic aspects of the N'=3, d=3 harmonic superspace were worked out for the first time
in [5]. In this paper we follow the notations used in our recent paper [6]. They are collected
in the appendix.

2.1 Gauge theory in standard N'=3 superspace

To begin with, we consider the gauge theory in standard N'=3, d=3 superspace with
coordinates (z*? ,04 ) and covariant spinor derivatives DY given by (A.10). Following the
standard geometric approach to gauge theories in superspace, we start by defining the
superfield connections for the space-time and spinor derivatives,

The main superfield constraint for these superfield connections is given by [5]
{VY, Vgl} = ivaﬁ(&‘majl + allajk) — §€a5(€lkWﬂ + Wik 4wk 4 EjkW’l) . (2.2)

where W% = W) ig a superfield strength for these gauge connections. Using the Bianchi
identities one can check that the commutators of other covariant derivatives do not involve
new tensors except W% and its derivatives,

Vap, VI = ear F§ + s, FlI

[Vag: Vas] = carFias) + v Flas) + a5 F(an) + €asFlay) (24)
where
FY = Z(voffW,g + VWD), Flag = ﬂ(vm-jvﬁ’*fw,g + Vi VEW]). (2.5)

Moreover, the Bianchi identities lead to the following off-shell constraint for W,
VEWHR =, (2.6)

In the next subsection we will show how this constraint is resolved within the harmonic
superspace approach.

2.2 Gauge theory in N'=3 harmonic superspace

The N'=3 harmonic superspace is parametrized by the following coordinates’

2 ={2,057,0,7,00,u;}, (2.7)
where 07+ = Héfufu;t, 00 = ngfuj_ and u are the SU(2)/U(1) harmonic coordinates
subjected to the constraints u™u; = 1, u“u;F = 0, v 'u; = 0. The harmonic projec-
tions of the covariant spinor derivatives Vg and the superfield strengths W% are defined
as follows

Vit = ujujvg , V, = u;u]Vi{ , Vo = uju]*vg ,
Wt = ujujWij, W = ul_uj_W” , W = uju]_W” (2.8)

!Note that in [5] the N'=3, d=3 harmonic superspace with O(3)/0(2) harmonics was introduced.



There are obvious relations between the harmonic superfield strengths,

la”WH, W =0 "W’= %(a”)QWH, (2.9)

(a) OFtTWtT =0, (b) W°= 5

8ii

where harmonic derivatives in the central basis are defined in appendix. In terms of

the above harmonic projections, the anticommutation relations (2.2) can be rewritten as

(v, V5 } =2iVas + 2ea5W?, (v, v%} =—iVag,
(Vi Vi) =eagW ™, (Vo™ V) = —easW ™, (2.10)

while the harmonic projections of the constraint (2.6) are given by

VWt =0, (2.11)
V, W =0, V, W 44vOIWwl + vitw— =0,
VoWt £ vl =0, VoW + v, W=0. (2.12)

The relations (2.11) and (2.12) are none other than the Bianchi identities for the super-
field strengths Wt+, W——, WO It is important to realize that the whole set of the
constraints (2.12) can be produced from the relation (2.11) by the successive action of the
harmonic derivative 0~ ~. Thus eq. (2.11) is the basic constraint. As will be clear soon, it
is nothing else as the Grassmann analyticity condition, and it can be solved by passing to
the analytic basis in N'=3, d=3 harmonic superspace and to an analytic gauge frame.

An important feature of the N'=3, d=3 harmonic superspace is the existence of an
analytic subspace in it. This subspace is closed under the N'=3 supersymmetry and is

parametrized by the following coordinates

Ca= (3, 007,00,uf"), (2.13)
where
25 = (ym) P = 2 4 i(67TT 0 90T ). (2.14)

The analytic basis of N'=3, d=3 harmonic superspace (as opposed to the original, central
basis (27,04 )) is defined as the coordinate set

2 ={Ca 05} (2.15)

In the analytic basis the Grassmann derivative D} becomes short, DIt = 8619*04' Other

Grassmann and harmonic derivatives in this basis are given by expressions (A.17), ( A.18).

The existence of the analytic subspace is crucial for constructing superfield actions, as it
allows one to define the analytic (short) superfields, which are independent of the coordi-
nate 67~

DItd,=0 = &4=2>4(Ca). (2.16)

As soon as the harmonic variables uli appear on equal footing with the other su-
perspace coordinates, there is a set of the harmonic derivatives 07+, 07—, 0° given



by (A.13). Clearly, these derivatives do not receive any gauge connections in the origi-
nal gauge frame (“7 frame”), since the gauge transformations in it are associated with the
harmonic-independent, gauge algebra valued superfield parameter 7 = 7(2), e.g.,

W4 — TW4e™™ | otr=0""1=0. (2.17)

However, in order to be able to deal with the manifestly analytic superfields (2.16) in
non-trivial representations of the gauge group, one should define another gauge frame (“A

frame”) in which the gauge group is represented by the analytic superfield transformations,
by — =y, DIFA=0. (2.18)

Having two different representations of the same gauge group, one with the harmonic-
independent gauge parameter 7 and another with the analytic gauge parameter \, one can
define the invertible “bridge” e, Q = Q(z,u), which transforms as

Y = eMefle T, (2.19)
and thus relates the 7 and A frames [1]:
Dy =€ s, Dy — Py =€ Py (2.20)

Respectively, the Grassmann and harmonic gauge covariant derivatives in the 7 and A
frames are related as

va-;_a - e_Qv;_—'—eQ = DI—F ) (_A;a = e_ﬂv;_eﬂ7 v(()A)a = e_QVgeQ7
(2.21)
v?;j): — ¢ OpEESL — pEE | vEE, VEE = efQ(DiieQ)’ (2.22)

where D** are the analytic-basis harmonic derivatives defined in (A.17).2 Hereafter, we
omit the subscript (\), assuming that we will always make use of the A frame.

It is crucial that the derivative V2T in the A frame becomes short while the harmonic
derivatives acquire gauge connections. Owing to the commutation relation [DF+ V] =
0, the superfield V7 is analytic,

DIfvtt =0. (2.23)

The algebra of harmonic derivatives [V¥T,V~"] = D’ leads to the harmonic zero-
curvature equation,

DV D VT VT VT =0, (2.24)

which defines the gauge prepotential V=~ as a function of V™. An explicit solution of

this equation can be represented by the series [11],

__ S N " VI (z,u1) VI (z,u9) ... VT (2, uy)
1% (z,u)—nzz:l( 1) /d Lo duy D)) - (et . (2.25)

*We would equally choose the central-basis form of the harmonic derivatives in (2.21), because there is
no direct correlation between the superspace bases and the gauge frames.



It is important that not only the prepotential V~7, but the gauge connections for the
Grassmann derivatives, as well as the superfield strengths in (2.10), can be expressed
through V*+. In particular,

1

V=, DIt =2vY = VY = —§D;+V", (2.26)
1

(DT, Vh} =capWtt = Wt = —ZDJ”LO‘D;FJFV__ : (2.27)

where V'~ is a function of VT given by (2.25). The equations (2.9b), being rewritten in
the A frame, read

1 1
wo = 5v——W++, W=V w’= 5(v——)2W++. (2.28)
The equation (2.11), when written in the A frame, just means the analyticity of the

superfield strength W™,
D;rJrWJrJr =0 = W++ — W++(<A) ) (229)

As a result, the superfield constraint (2.11) for W is solved by using the ) representation
of the gauge group and the analytic basis (2.15) in the harmonic superspace. However,
the relation 9TTW*T = 0, eq. (2.9a), which, in the 7 frame, just states that W+ is
homogeneous of degree 2 in uf, becomes non-trivial in the A frame:

VWt =0. (2.30)

In particular, this constraint encodes the Bianchi identity for the gauge field component of
the gauge superfield strength.

2.3 N=3 super Yang-Mills and Chern-Simons models

As shown in the previous subsection, the N'=3, d=3 gauge theory is described by the
superfield strengths W+, WO W~= which can be expressed through the single analytic
gauge prepotential V. Since the superfield W T is analytic, eq. (2.29), it can be used
for constructing the actions directly in the analytic subspace. In particular, the super
Yang-Mills (SYM) and Chern-Simons actions are given by [5]

Ssyn = %m« / d¢EOWHW (2.31)
g

ik o= (—1)" 3 6 VtH(z,ur) ... V(2 uy)
= —t —— [ d&’zd’0du; .. .duy, . (2.32
Scs A Z n / v " " (ufug) ... (whul) (2:32)

Here g is the Yang-Mills coupling constant with the mass dimension [g] = 1/2 while k is
the (integer) Chern-Simons level. The rules of integration over the analytic and full N'=3
superspaces are given in the appendix. Both SYM and Chern-Simons actions are invariant

under the following gauge transformations

Vit vt = Avtte A (2.33)



or, in the infinitesimal form,
HVTT = —VTth= D X [VTT )], (2.34)

where ) is an analytic gauge parameter.
One can partly fix the gauge freedom by passing to the Wess-Zumino gauge, in which

Vi s = 3007 uu; ¢ (wa) + 2070 Ap(a) + 2(0°)%0T TN, (24)
+3(07)20%u uy X (wa) + 30(07T)2(0°) 2y up XM (z4) . (2.35)

Such a form of the gauge prepotential is most suitable for deriving the component structure
of the SYM and Chern-Simons actions®

1 1 , {
Ssvar = v / d’z <¢MD¢M 3P fos = iX0ap N = Sx M 0uxgy — XM X (2:36)

—|—interaction> ,

7

X (27)

k 3 kl 21 i1 .k j i «
Scs = Etf /d $<¢ Xt — g%[@ﬂﬁi] +§)\ Aa

Lo i a
_§A ﬁagA,@“f B éAﬁ[Ag7A€]> )

where fo3 = 04 Ay + 83140”.

Since the SYM model in three-dimensional space-time involves the dimensionful cou-
pling constant, it is not superconformal. In contrast, the Chern-Simons theory has di-
mensionless coupling constant and therefore is superconformal. In this paper we will be
basically interested in quantum aspects of superconformal models; so our main focus will
be on the N'=3 Chern-Simons gauge theory, rather than on A’=3 SYM. One more class of
N=3 superconformal theories we shall study is those of matter hypermultiplets.

2.4 N=3 hypermultiplets

There are two basic types of the hypermultiplet in four dimensions: the ¢ hypermultiplet
and the w hypermultiplet. They describe the same physical degrees of freedom, though
with different assignments with respect to the R symmetry SU(2) group. Quite analogously,
both these types of hypermultiplets exist in three-dimensional space-time too. In particular,
the g-hypermultiplet consists of a SU(2) doublet of complex scalars f* and a doublet of
complex spinors 1!, on shell. These fields appear in the component expansions of the
complex analytic superfield ¢* as

gt =ul f (0T — 0% )yl — 2i(07T0%)0%; flu; + aux. fields. (2.38)

The free hypermultiplet action has the well known form,

Sq = /dC(4)TD++q+7 gt =q", 7 =—q*, (2.39)

3In the component field formulation such actions were obtained in [12].



which yields the following free action for the physical components upon eliminating an
infinite tower of the auxiliary fields:

Sq.phys = _/d333 <ﬁ'Dfi + %&?8a5¢i6> : (2.40)

The w-hypermultiplet collects on shell a real scalar ¢, a triplet of real scalars ¢(¥), a
real spinor 1), and a triplet of real spinors 1/)8] ) Wwhich appear in the component expansion
of a real analytic superfield w as

iv/3

1 1 .. _ 17 3 o . .. _

2% + ﬁgpwu;ruj + ﬁﬂoawa + 79++°‘¢fjui u; — iV/30% ifuju]

—iV/20T 0909, 50 uTuT + aux. fields. 2.41
BY Uy J

w =

The free superfield action
S, = /dC(_4)D++wD++w, w=w, (2.42)
gives the standard kinetic terms for the physical component fields,
S phys = —% / B (e0p + 0705 + it Dagth” + i) “0upi)y) . (2.43)

The minimal gauge interaction of hypermultiplets can be implemented by promoting
the flat harmonic derivative D™ to the gauge covariant one V™ = DT+ 4 V/++:

Sq = / AVt (2.44)
S, = / G EEAVARIFA vARIRE (2.45)

For the time being we do not specify the representation of gauge group on the matter
fields. We only notice that there is a difference between the ¢ and w hypermultiplet
models in this aspect: since the w hypermultiplet is described by a real superfield, it
can be naturally placed into a real representation, e.g. the adjoint representation, while
the ¢ hypermultiplet is well suited for putting it into a complex representation of the
gauge group, e.g. the fundamental one. Actually, there is a duality-sort transformation
between two types of the hypermultiplet [3], so this difference between them is, to some
extent, conventional.

Apart from the minimal gauge interaction, one can consider the hypermultiplet self-
interaction. For the model with a single ¢ hypermultiplet there exists the unique possibility
to construct a quartic SU(2)g invariant superfield potential*

Sy = /\/dg(—“) (¢tqH?, [N =-1. (2.46)

In section 5.3 we will show that the self-interaction (2.46) emerges as a leading quantum
correction in the model of massive charged hypermultiplet.

4To prevent a possible confusion, let us recall that such ¢ superfield “potentials”, after passing to the
physical component fields, give rise to the sigma-model terms for the latter rather than to a scalar potential
and Yukawa-type fermionic couplings [13]. However, these component potential terms can appear as an
effect of presence of central charges in the supersymmetry algebra.



3 Background field quantization

The background field method is a powerful tool for studying the general structure of the
quantum effective actions in gauge theories. The basic advantage of this method is that
it gives an opportunity to evaluate the effective action with preserving the classical gauge
invariance on all steps of quantum computations. The idea of the background field method
consists in splitting the initial fields into the classical and quantum parts and fixing the
gauge symmetry only for the quantum fields in the generating functional for the effective
action. For supersymmetric field models the concrete realizations of such a splitting is a
non-trivial task which requires a special study in every case. For N'=1, d=4 supergauge
theories the background field method is discussed in [14, 15]. For N'=2, d=4 supersym-
metric theories formulated in terms of (constrained) N'=2 superfields such a method was
worked out in [16]. For the N'=2, d=4 supergauge theories in harmonic superspace this
method was developed in [17, 18]. Subsequently, it was successfully applied for studying
quantum aspects of these models.

In this section we formulate the background field method for the N'=3, d=3 Chern-
Simons matter theory with the following general action

S =Scs+ 9, (3.1)
where the Chern-Simons and hypermultiplet actions are given by eqs. (2.32), (2.44).5

3.1 The background field method for N'=3 Chern-Simons theory

The background field method for the A’'=3, d=3 Chern-Simons theory is analogous in some
points to the one for the N'=2, d=4 SYM theory [17], because the harmonic superspace
classical actions in both theories bear a close resemblance to each other.

The classical action in the A’=3 Chern-Simons theory (2.32) is invariant under the
gauge transformations (2.34). We split the gauge superfield V** into the ‘background’
VT and ‘quantum’ v parts,

VIt — VTt kot (3.2)
where 1 .
i
—=—. 3.3
kK2 Am (33)

Then, the infinitesimal gauge transformations (2.34) can be realized in two different ways:
(i) Background transformations
VT = DIt A - [VTT N = -V, Svtt = [\ vt T]; (3.4)
(ii) Quantum transformations

SVt =0, sutt = —lv++)\ — [T, A]. (3.5)
K

®Here we do not consider the A'=3 SYM theory (2.31) since we concentrate on the conformally invariant
models.



Here the covariant harmonic derivative V*+ involves the background superfield V™. Upon
the splitting (3.2), the Chern-Simons action (2.32) can be rewritten as (see [19] for details
of such a derivation in the N'=2, d=4 case)

1
SesVIT 4+ 0] = Ses [V - —tr / dCCD VWV 4 ASes [V 0], (3.6)

where W+ (V1) is defined in (2.27) and

o0 ++

(—k)"2 9 v (z,ur) . o (2 up)
AScs[VTT vt =tr — /d zduy . .. du,—— z . (3.7

n=2

We introduced v+ = e=%vt e, with the bridge superfield Q being constructed from the
background gauge superfield V' by the rule (2.22). The action (3.7) implicitly depends on
the background superfield V1 via the bridge superfield Q which is a complicated function
of VT*. Every term in (3.6) is manifestly invariant under the background gauge trans-
formations (3.4). The second term in (3.6) is responsible for the Chern-Simons equation
of motion for the background gauge superfield which is none other than W*+(V++) = 0.
This term is not essential while constructing the effective action.

Within the background field method, it is necessary to fix the gauge only with respect
to the quantum gauge transformations (3.5). The corresponding gauge-fixing function is

FO = gyttt (3.8)
or, being rewritten in the 7 frame,
FWO = DHopft = e Q(UTpt e = e CF@WL (3.9)
Under the quantum gauge transformations (3.5) this function is transformed as
SFW — —%efg{vwwu + ot A e (3.10)
The corresponding Faddeev-Popov determinant
App[VTT, 0T = Det VIH (VT 4+ kot ™) (3.11)

can be represented by a path integral [ DbDc exp(iSpp) with two ghost superfields b, ¢ in
the adjoint representation of the gauge group and with the ghost-field action

Spp = tr /dC(_4)bV++(V++c + k[T, ). (3.12)

Putting all these ingredients together, we obtain the following representation for the effec-
tive action,

TesVH] _ iSes[VH] / Dot DbDe iASeslV H vt H i lbe Vot g p() _ @)

(3.13)

,10,



where f® is an arbitrary Lie algebra valued analytic function and & [F @ —f (4)] is the
proper functional delta-function which fixes the gauge.
To cast (3.13) in a more useful form, we average it with the following weight factor

-1 U Ugy
AVt exp {%tr /dgzdulduz fT(A‘)(z,ul)ﬁfT@‘)(z,ug)} , (3.14)

where « is an arbitrary parameter. The functional A[V*"] can be found from the condition

1=A[VTH /Df(4) exp {;—Oitr /dgzduldug f£4)(z,u1)%fﬁ4)(z,ug)} . (3.15)

Hence,
A = [ oo { S [ac=ad A e |
= Det™'/24, (3.16)

where A is some analytic Lie algebra valued operator with the kernel A((y,(2). To compute
Det A, we represent it by a functional integral over the analytic superfields,

Det 1A = / DY WDy exp{m / dcf4’d<§4>x<4><<1>A<<1,<2>p<4><<2>} (3.17)

and perform the following change of functional variables

sp®

p@ = (V)25  Det = Det(V++)?2. (3.18)

(2

Then we obtain
e [ de= e (€)AG G) (@)

Ul Uy 1 __
= tr /dgzduldu2 Xg)(z,ul)ﬁp(‘;raT(z,uQ) = §/dgzduX(T4)(D Vo,
1 Uz

I~ / Ay DA, (3.19)
where 1
A= g(D++)2(v——)2. (3.20)
As a result, A[VT*] can be formally written as
~1/2 1/2 A
A[VH] = Det )0 (VHH)? Det 15 A, (3.21)

where

Det(_()lé)Q(v++)2 _ /D¢ e—iSNK[¢7V++}’

Swlo V] = —gtr [ dcCIV T (3.22)
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and
~1 A i [ de(—) (@) A
Det(zjo)A = /DX(4)DO' R (3.23)
The analytic real bosonic superfield ¢ plays the role of Nielsen-Kallosh ghost in this theory.
The classical action for this superfield coincides with the w-hypermultiplet action (2.45).
Upon averaging (3.13) with the weight factor (3.14) we arrive at the following path-
integral representation for the effective action

STV gSeslV ] Detlf2 A / Dot DyDeDgetSalvt Fbed Vi (3.24)

where

SQ [U++7 b7 ¢, ¢7 V++] = ASCS [V++7 U++] + SGF [V++7 U++]
+Spp[b, ¢, VT o] + Sxklo, V], (3.25)

Here Sgr[v™™, V**] is the gauge-fixing contribution to the quantum action given by

1 -
Sar[VTH ot = ——tr /dgzduldug(D++vi+(z,ul))(u_&iu_f)(l)'ﬁ Tt (z,u9))
20 (uiuz)?
1 9 v (2w )of (2, u2)
= —%tr /d zduidusg (ufu;)
1
—ﬁtr /d( v AT, (3.26)

Let us consider the sum of quadratic in v+ parts of AScs and Sar,

1 1 v (2, up) v (2, ug) 1
— (14 =) tr [ d2duidus—= A d¢EHyttAvtt . (3.2
2 < + a) r/ zduydus (ufu;) 2a / C v (3.27)

The first term in (3.27) vanishes at @ = —1, and we will adopt this choice in what follows.
As a result, we arrive at the following final representation for the effective action

etis[V++] ZSCS[V++}(D 1%420 A)/Dv++DchD¢ei(52[U++’b’c’¢’v++]+si“t[U++’b’c’v++]),
(3.28)
where
SalvF,b,e,0, V] = 5 / d¢THv T Av Tt 4t / d¢Hp(VH)2e
gir [ Vv, (3.29)
g LT vt (zuy) .ot (2, up)
Sint[vT T, 0, e, VI = tr ~ | d’zduy ...du,—= T
n;, n (uud). . (wiuf)
—Ktr /dC(_4)V++b[v++,C]. (3.30)

The equations (3.28)—(3.30) completely determine the structure of perturbative expansion
for the effective action in the pure A’'=3 Chern-Simons theory in a manifestly supersym-
metric and gauge invariant form.
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3.2 Adding hypermultiplets

Now we include into considerations the g-hypermultiplet superfield with the following clas-

sical action

Sq = /dC(_4)g7+(V++ + kot )", (3.31)

where VT is the covariant harmonic derivative with the background gauge superfield
V++. Here we do not specify the representation of the gauge group on the hypermultiplet.
We split the hypermultiplet superfields into the background ¢*, and quantum q* parts,

- —q¢"+at, g —q+q". (3.32)

Upon such a splitting, the classical action (3.31) can be rewritten as a sum of the following

four pieces

Sq - Sq [(j+, q+7 V++] + Slin + SQ + Sint 5 (333)

where S,[g",q", V1] is given by (2.44) and is constructed solely from the classical fields,
while the term Sj;, is linear in the quantum fields,

This term can be omitted since it does not contribute to the effective action. The pieces
Sy and Sjy in (3.33) correspond, respectively, to that part of the action which is quadratic
in the quantum superfields, and to the interaction term:

S = [dC0@ Va4 a Rt b gt R, (3.35)

Sint = / d¢gtvt gt (3.36)

Now we can generalize the generating functional for the effective action (3.28) to the

Chern-Simons matter theory,

eiFCS[V++v‘j+7q+] _ ei(Scs[V++}+Sq[‘j+vq+’v++})(Deté{%)A)

X / Dut T DbDeDy DGt Dg T el it | (3.37)

where
Sy = ; / dCEDptt Aptt + tr / dg(_4)b(v++)zc+%tr / AV (V)20

+/dg‘( NGVt + gttt rgtottat), (3.38)

e n,.n—2 ++

_1 DY ++ n
Sint, = tr Z%/dgzdul...dun% (zyur) ... 07" (2, un)

/ dcgroTrqt — kitr / d¢THIVTTbTT . (3.39)

The treatment of the w hypermultiplet within the background field method is quite
analogous to the above g hypermultiplet consideration.
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3.3 Gauge and hypermultiplet propagators

It is seen from the action (3.38) that the gauge and hypermultiplet propagators are defined
by the equations

Tt (2)) = G2 (1)2) AGC(1)2) = 3P (1]2) (3.40)
@ (Ha*(2)) =a*M () : VGt =), (3.41)
@(Mw(2)) =GP (1)2) ; (VEH2GO9(12) = 650 (1]2), (3.42)

where the analytic delta-function is given by

s (1)2) = D{Jaujj 82 (21 — 22)600D (uy, u) . (3.43)
Here 6(=99) (uy,up) is the standard harmonic delta-function [4].

The solutions of the equations (3.40), (3.41) and (3.42) are given by the following
expressions

G22(1)2) = A12 As?(1)2) (3.44)
G (1)2) = 1215 (DD e M (z(jjj(;l —22) (3.45)
GO0 (1f2) — 121D (D (D5 P, e~ 9(2)((5;21;;322)(%%) (3.46)
e WO =wo ¢ %A + %vwvg (3.47)

and the operators A, A2, [J depending on the background gauge superfield V' will be
specified below.

The operator A was introduced in (3.20). It has the following basic commutation
relations with the Grassmann and harmonic derivatives

DFt Al=0, [V, AW =1 - gwttel). (3.48)
When acting on the analytic superfields, the operators A and A? can be represented as
A= (V2w —wHty—, (3.49)
A2 = VY, + 3WHTW " + (W92 — (VO)2WO) + (D oW —)VY — 2w 0(v0)?
—2(VOew N VOIv— — 2wt (V))Av T — 2wt Vlev T L wOW YT
+3W WOV — (VO 2WHH v 4+ wWHtwH(v—)2. (3.50)
Since the expression (3.50) starts with the square V™V,,, the operator 1/A? in (3.44) is

well defined as a power series expansion around V™V,,.
The hypermultiplet propagators (3.45) and (3.46) involve the operator

£= %(DHPWO(V")?, (3.51)
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where WY is defined in (3.47). This operator [J reveals the following basic properties
DI O =0, (VPO = (1 {(V)PWH) + (WO W el (3.52)

where <I>(X) is some analytic superfield. With making use of these properties, the operator
0 in application to the analytic superﬁelds is reduced to
= V"V + {W” Wit + = [W++ W+ (DT W)V + (VW TV,
—((VY)? W**)V” + [W**, WOV — ((VO)2WY). (3.53)
The expression (3.53) starts with V™V, hence the operator (01 is well defined as a power
series expansion.

For the vanishing background field the propagators (3.44), (3.45) and (3.46) take very
simple form,

D(1j2) = (D22 (1]2), (354)
9 21 — R

012) = o5 (P PO P EE (3.59)

D1)2) = 161D (D)2 (DENHDE) )28 (=1 —zg)% (3.56)

Notice that the free ¢- and w-hypermultiplet propagators are, respectively, antisymmetric
and symmetric with respect to interchanging their arguments,

D)= -cVeny, ey =aen). (3.57)

We will use these free propagators in the next section where some examples of quantum
computations within this approach will be presented.
An alternative representation for the free propagators (3.54), (3.55) and (3.56) is
given by
1 1
27Ti A /2paﬁpa6
+(ufug ) (057)200 %) (u, us) (3.58)
1 (ufuy)
2mi \/2°Pp, /3

27T’i A /2/)046/)@5

Gy (12) = [(67)% — 2(ufuy)2(6705)

c{MV2) = (3.59)

where

& o 08 2i — —\ptt(ap++8
Pﬁ:~"3,4ﬁ1_33,462_229( 0, : m (uyug )6, (92 )
1 U

— (uyu)oy 097

—(utuz)0) 0 - (uyu)oy 0D 4 (ufuy )65 05 (3.61)

is manifestly analytic N'=3 supersymmetric interval.
The quantization of the N'=3, d=3 superfield theories was considered for the first time
in the formalism with the O(3)/0O(2) harmonics in [5].
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3.4 N=3, d=3 nonrenormalization theorem

It is well known that the g-function for Chern-Simons coupling in an arbitrary Chern-
Simons matter theory is trivial [20], the divergences may occur only in the sector of matter
fields. As for supersymmetric Chern-Simons matter theory, one can hope that the super-
symmetry may reduce the degree of such divergences or even ensure their full cancellation
like in the N'=4, d=4 SYM theory. The nonrenormalization properties of some AN'=1 and
N'=2 Chern-Simons matter theories were discussed in [23]. It was shown that in the general
case such N'=1 and N'=2 theories with scale-invariant superpotentials are not free of UV
divergences, but for some particular superpotentials, when the supersymmetry is enhanced
to N'=6 or N'=8, the cancellation of such divergences may occur [24].

Here we prove the nonrenormalization theorem in general A'=3 Chern-Simons matter
theory. The general statement is as follows: The effective action in the N'=3 Chern-Simons
model (2.32) with arbitrary number of ¢ and w hypermultiplets (2.44), (2.45) in an arbitrary
representation of gauge group is completely finite, in the sense that superfield Feynman
diagrams contributing to the effective action show up no any UV quantum divergences.

This statement is very similar to the nonrenormalization theorem for the N'=2, d=4
supergauge theory [18] which provides the finiteness of this theory beyond one loop. In
fact, this analogy is even deeper: the form of the Chern-Simons action (2.32) is similar
to the N=2, d=4 SYM action (there is a dimensionless coupling constant in both cases),
the only difference being in the fact that the integration is now performed over the three-
dimensional space-time. The form of classical harmonic superfield Lagrangians for the ¢
and w hypermultiplets is completely the same as in four dimensions. The details of the
background field method for the N'=3 Chern-Simons theory given in the previous section
are analogous to those in the N'=2,d=4 case [17]. Therefore one can follow all the steps
of proving the four-dimensional A'=2 nonrenormalization theorem in [18] to arrive at the
same conclusion in the N'=3, d=3 Chern-Simons-matter theory. Of course, the gauge and
matter propagators in N'=3, d=3 theory are slightly different from their four-dimensional
counterparts, and this should be taken into account in the proof of the nonrenormalization
theorem in the considered case. In what follows we compute the superficial degree of
divergences in this theory and prove that the UV divergences are absent.

For calculating the superficial degree of divergence we need to know the structure
of superfield propagators for the matter and gauge superfields. Within the background
field method these propagators are given by the expressions (3.45), (3.46) and (3.44),
respectively. However, for computing the superficial degree of divergence it is sufficient to
know the free propagators (3.55), (3.56) and (3.54) since all terms which complement these
propagators to the gauge covariant form are only able to diminish the degree of divergence
of a diagram.

Let us consider some background-field dependent supergraph G with L loops, P prop-
agators and Ny,,¢ external matter legs. In the process of computation of the contribution
of such a graph Np covariant spinor derivatives may hit the external legs as a result of
integration by parts, thereby reducing the degree of divergence of the diagram. Like in the
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N'=2, d=4 gauge theory, the superficial degree of divergence w(G) of this graph is given by

(@) = 3L — 2P + (2P — Nyt — 3L) — %ND Nt — %ND . (3.62)
Here 3L is the contribution of loop momenta, —2P comes from the factors 07! in the
propagators while another 2P corresponds to the operators (D*7)%(D°)? standing in the
numerators of the propagators. We point out that the number 2P in the term within
round brackets in (3.62) is decreased by the number Ny,,¢ because each external matter leg
effectively takes one (DT+)? operator to restore full superspace measure by the rule (A.23).
Another negative contribution —3L in this term appears since for each loop we have to
apply the identity (4.4) which reduces the number of the covariant spinor derivatives. Thus
we see that any diagram with external matter legs is automatically finite. For the diagrams
without external matter legs, the last contribution —%N p in (3.62) plays the crucial role.
This contribution appears when Np covariant spinor derivatives hit the background gauge
superfield V. In full analogy with the N'=2, d=4 supergauge theory, one can argue that
Np > 0 as a result of using the background field method. Indeed, within the background
field method the result of computing any diagram automatically comes out in a gauge
covariant form. In other words, it is expressed in terms of the covariant superfield strengths
W given in (2.2) and their covariant spinor derivatives. These derivatives are expressed
in terms of the gauge superfield V*+ with some number of covariant spinor derivatives on
it (see, e.g., (2.26), (2.27)). This means that these derivatives should be effectively taken
off from the propagators, thereby decreasing the superficial degree of divergence of the
resulting graph by the number Np. As a result, we arrive at the inequality w(G) < 0,
which proves the UV finiteness of all quantum diagrams in the model under consideration.
Some examples of such one-loop quantum computations will be presented in section 4,
just to confirm the proof given here. It is worthwhile to forewarn that all calculations in
section 4 will be performed with massless propagators for both the matter and the gauge
superfields, which may lead to infrared divergences like in (4.10). However, such divergences
automatically disappear if one studies the contributions to the effective action within the
background field method, when all the propagators are effectively massive. This completes
our arguments towards the quantum finiteness of the N'=3 Chern-Simons matter theory.

3.5 General structure of the on-shell effective action

For simplicity, we discuss the general structure of low-energy on-shell effective action in
the Abelian Chern-Simons theory interacting with ¢ hypermultiplet,®

1
S = / ¢t <§V++W++ + D gt q+v++q+> : (3.63)
The classical equations of motion are given by

vitgt =0, Vttgt =0, Wtt=gtqt. (3.64)

SHere we omit the Chern-Simons coupling constant for simplicity.
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These equations mean that in the 7 frame the hypermultiplet superfields are linear
in harmonics,

¢ =uld, T =ufd, (3.65)
while the gauge superfield strength reads
Wi = gligh (3.66)

In general, the on-shell effective action can be written as a sum of two terms expressed
as integrals over the analytic subspace and full superspace,

r=54T =5+ / dCY Lonarytic + / A2 Leay - (3.67)

Here S is the classical action, while I' corresponds to the quantum corrections. Since the
model (3.63) is scale invariant and there is no room for the conformal anomaly, as soon
as there are no any divergences, the effective action I' should be scale-invariant as well.
However, there exist no any other scale invariant analytic superspace invariants except
for the terms of the classical action (3.63). Therefore the effective action should receive
non-trivial contributions only in the form of integrals over the full superspace,

= /dgzﬁ(qi,qi,W”,...), (3.68)

where dots stand for the terms with various gauge covariant derivatives of the superfields
q¢', ¢ and W¥ while £ is some scale-independent gauge invariant function of its arguments.
The gauge invariance of the effective action (3.68) is ensured by the use of the background
filed method.

We should take into account that on shell all the superfield strengths W% in (3.68) are
expressed through the hypermultiplet superfields by virtue of (3.66). Therefore, on shell
the low-energy effective action can depend on the hypermultiplet superfields and their
derivatives of arbitrary order,

= /d% L(q",q', D¢" DIG" 0upq’, Dapd’s - . .) - (3.69)

In principle, one can look for the pure potential-like terms in the effective action,
i.e., terms containing no derivatives. However, such terms cannot appear in the effective
action (3.69). Indeed, there is the unique SU(2) invariant independent superfield combina-
tion ¢'q;, but any Lagrangian depending only on ¢'q; would involve a scale, £ = £(¢'q; /),
[A] = 1. Therefore, the expansion of the effective action starts from the terms with deriva-
tives. For instance, the following terms are admissible in the full superspace Lagrangian,

Dd¢*Dgq. D@ D%g. D q"Dgq,

gk gtk ik 3.70
CInE @) @) (3.70)

Further hints concerning the possible structure of the low-energy effective action can be

gained from the explicit quantum superfield computations.
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3.6 Effective action in the one-loop approximation

Let us turn back to the general non-Abelian Chern-Simons theory interacting with some
number of ¢ hypermultiplets with the action (3.1). Within the background field method
the effective action is given by the generating functional (3.37). The one-loop contributions
to the effective action are defined by the quadratic action (3.38),

. . . 0 VvVt gt
r® = —%Tr (a0 InA — %Tr AdIn(VTH)2 4 %Tr In|vtt o gt |. (3.71)
q+ q—+ A

A~

The first term in (3.71) corresponds to (Det (4 0)A) in (3.37) while the second term

—%Tr Ad In(V+1)?2 is responsible for the contributions from the ghost superfields which are
in the adjoint representation of the gauge group. The last matrix term in (3.71) appears
from the second line of (3.38) and it takes into account both the hypermultiplet and gauge
superfield contributions. Making the Cartan-Iwasawa decomposition of this matrix, we can
rewrite the effective action in the following form

r = %Tr (2,2) InA — %Tr (4,0) InA — %Tr AdIn(VTH)2 4 %Tr InH, (3.72)

where the operator H is given by

gt it ++ _ ot Llgt
H= ++q égl + ¥ %C{—ﬁq : (3.73)
VIt —q"xa" 07 xa

The expression (3.72) is the starting point for the one-loop perturbation theory in the
general N'=3 Chern-Simons matter theory.

4 Examples of supergraph computations

4.1 Hypermultiplet two-point function

Let us consider the ¢g-hypermultiplet effective action in the case of Abelian gauge superfield

& (C)m "
Dhyp =i Te (DT + V) =3 Ty, Thypn =i ——Tr <D++ v++> . (42)
n=2
Explicitly, the two-point function I's depicted in figure la, is given by
{ —4) . (—4) H(11 1,1
Dhpa = 5 [ Ve I68 v @6l epvto. @)

Next, we apply the expression (3.55) for the propagator and use two (D)2 operators to
restore the full A’'=3 harmonic superspace measure by the rule (A.23),

_ 1 3. 160 13 16 ++ +4 oy L 0,20° (21 — 22)
Phyp,2 = —3—2/d xld ald .%'Qd HgdulduQV (1)V (Q)E(Dl) W

20 (20 — 21)

1
<GP 2
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Figure 1. Hypermultiplet, gauge superfield and ghost contributions to I's.

To shrink down the loop over Grassmann variables to a point we apply the identity
8°(01 — 02) (D ) (DS )% (D9)?6% (22 — 21) = —16(ufugf )*6° (21 — 22) (4.4)

and pass to the momentum representation for the superfields,

3
o [ e (DY 0 )V ). (49)

r =—
hup2 = 16 (2m)3 " (ufud)? \/p2
In the Abelian case the relation (2.25) between V™" and V™~ becomes very simple,

V++(Z’ u?)

V7 (z,u) = /duQW. (4.6)

Uyp Ug

Using this relation, the expression (4.5) can be rewritten as

] 1
Thypa = ! / d3zd%9du (D°)? V1T (2,0,u)—=V """ (z,0,u)

16 VO

i 1

= — [ d¢Y (D)) =Wt 4.7
5 [ 10 (4.7
By 1/ VO we denote a non-local operator which acts as the multiplication by 1 /\/P? in
the momentum representation. Finally, it is easy to see that (4.7) is non other than the
Abelian SYM action with the insertion of the non-local operator 1/ VO,

i

Thypz = —7¢ [ d¢TOW T

1

VO

A similar result was obtained in the non-supersymmetric Chern-Simons matter theory [26],

wtt, (4.8)

as well as in studying quantum corrections in BLG theory [24].

As a result, the leading contribution to the hypermultiplet effective action given by
the two-point function reproduces the SYM action with the insertion of non-local operator
1/ VvO. Of course, such a non-local operator appears because we do our computations in
the massless theory in which the momentum integral [ kgg)’f’%y is plagued by the infrared
divergence at small p. At zero external momentum, p = 0, one can regularize this integral

by introducing the parameter A as a cut-off at small &,

/ d3k 1 local limit / dBk 1 ) /oo dk 7 1 (4 9)
— 7 5 T — — o8 1 - .
21 K2(p + k)2 2Pk 22 ), B 22A
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Then, the action (4.8) in the local limit is given by

TChyp2 = 5% / d¢HwHtw (4.10)
Alternatively, to avoid the regularization of the momentum integral (4.9), one can consider
the model of massive hypermultiplet interacting with the Abelian gauge superfield. Such
a model is studied in section 5.

One can easily generalize the result (4.8) to the case of a hypermultiplet in some
representation R of non-Abelian gauge group G,

L
VO

Here, tr (TATH) = T(R)5%, T(adjoint) = 1, and W, is the linear in V7 part of the
full non-Abelian superfield strength W14,

i . ) .
Ly = =T (R) 75 /dC( D te——wyte. (4.11)

4.2 Gauge and ghost superfield two-point functions

The next example of quantum computations is represented by the diagrams b) and c) at
figure 1 which make the leading two-point contributions to the functional integral (3.28).
To study the pure gauge superfield diagram a) it is sufficient to consider the Chern-Simons
action (2.32) up to the cubic term,

S =Sy 4 S, + S = ;—km« / dCD Y (DO (4.12)
Y
V++(Z’ ul)[V—H_(Z’ u2)’ V++(Z, u3)]

(uf ug) (w3 ug ) (ug uy)

——tr /dgzduldquug

Let us expand the gauge superfields over the generators T of gauge group G,
VTt = yTtaerae 5o that

WV (z,u), VT (z,u)] = VT2, u)) VI (2, up) f22°T (4.13)

where %€ are the structure constants. As a result, the action (4.12) is rewritten as

S = ﬁ d<(74) V++a(D0)2VJr+a
8
V++“(z, ul)VJrer(z, u2)v++c(2’ ug)

(uf ug ) (ug ug) (g uy)

—% fFabe / 4 zduy dusdus (4.14)
T

The contribution of this action to the one-loop effective action in the N'=3 Chern-Simons

theory is as follows

] ab (2,2 abe L
Pes = 3TrIn |85 (1[2) — " == (DY) (D) (D)0 (21 — 22)
VHre(z, ug)
X dU3 ’ . (415)
/ (uiug ) (ug ug) (ug uf)
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We single out in (4.15) the two-point contribution,

Fego = ~16.64 64fabcfbad/ ¢V deS ™ dugduy

V(21 us)

1
X = (D0 F(DG DG 260 = 22)

DI (o ) )
1 2 (Y269, V20, ua)
B e P e g 41

Further computations are analogous to those performed in the previous subsection: we
restore the full superspace measure by the rule (A.23) and shrink down the loop over the
Grassmann variables to a point using the identity (4.4),

1 1
CS 2 = fabcfabd/d3x1d3x2d60duldUQdU3dU45(53(.%'1 — 1‘2)553(.%'2 — 1‘1)

% V++d(x2a 95 u4)(D(O ))2V++c(x1, 9’ u3)(ufu§r)2 (4 17)
(ug g ) (ug uy) (uf ug) (uf uy) ' '

To compute the harmonic integrals, we apply the following identity

(ug uy )? (ug uy)
duldu2 =-2 . (418)
/ (g ug ) (ug uf) (uf uf ) (ug ug) (ug uf)

Passing to the momentum representation and computing the momentum integral, we find

1 e ra d3p 1 c Uy Uy
Pese=15f b bd/( e Odurdus \/]?( )V (p7evul)v++d(_p767u2)§u}|—ui;'
1 Us
(4.19)

This expression is non-local only in the harmonic variables.
Finally, we consider the ghost field action (3.12) which can be rewritten for the van-
ishing background field as

gh _ /dC [baD—H-D-H-Ca + fabcbaD++V++b c] ) (4.20)

The one-loop effective action for the ghost superfields reads (minus sign is due to the odd
statistics of ghost superfields)

Ty, = —iTr In [5ab5f£’4>(1|2) + fevite@pyr e ag) . (4.21)

We need only the two-point contribution depicted in figure 1c,

1 — _
th,Q = 5 / dC((l)4)dC((2)4)fabCfbadVJrer(l)VJrJrc( )D(-;}—G (0,0) (1’2)D++G(0 ,0) (2‘1) (422)

Further we assume that the structure constants are normalized in such a way that
fabefbad — sed e T(adjoint) = 1. Omitting the details of computations (which are

analogous to those in the previous subsection), we obtain

1 a3 Tu
Lhg2 = —/ L d®9duy duy—— (D)) VH“(pa97U1)V++“(—p,9,uz)(

16 / (27)3 \/_
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Now we sum up the gauge and ghost superfields two-point contributions (4.19), (4.23),

Fgauge,2 = FCS,2 + th,Q

1 3 DO 2V++a p707u1 V++a _p707u2
_ __/ d p3d69du1du2( ) ( +) . ( i . (4.24)
16 J (2m) [ (u ud)?
where the following identity has been used
(wpug)(wfuy) (wuy) 1 (4.25)
(ufuy)? (ufug)  (ufug)?
The expression (4.24) can be rewritten in the analytic superspace,
Tonuoes = K / d¢=4) wra_L ppta (4.26)
gauge, 16 0 \/ﬁ 0 ’

where I/VSL T4 is the linear in V1 part of the full non-Abelian superfield strength W*+e,

Note that the hypermultiplet two-point function (4.11) has exactly the same form,
but opposite sign. Hence, these two contributions cancel out each other if one takes n
hypermultiplet qi+ in representations R;, providing that > ;" ; T'(R;) = 1. For instance, one
g-hypermultiplet in the adjoint representation is sufficient for these two contributions to
cancel each other.

A similar cancellation between the hypermultiplet and gauge superfield two-point func-
tions plays the important role in the N'=2, d=4 gauge theory [3], where it is the mani-
festation of quantum UV finiteness of the N'=4, d=4 SYM theory. However, in our case
this cancellation is not of the same significance as for the four-dimensional models, because
all quantum contributions are now divergenceless. The term (4.26) does not contribute
to the Chern-Simons effective action since it vanishes on the classical equations of motion
for the pure gauge superfields. Moreover, this term is gauge-variant. This was explained
in [27] for non-supersymmetric Chern-Simons theory, but this is true in our case too. Recall
that we work in the Fermi-Feynman gauge, a= — 1, while the authors of [24, 26] used the
Landau gauge =0 for which the contributions of the form (4.26) are absent in the pure
Chern-Simons theory.

4.3 Vanishing of tadpoles and hypermultiplet self-energy

Now we shall consider the tadpole as well as hypermultiplet self-energy diagrams depicted
in figure 2 and show that their contributions vanish as a consequence of the properties of
Grassmann and harmonic distributions.

The vanishing of the pure gauge superfield diagram a) at figure 2 is obvious. Indeed,
the gauge superfield propagator (3.54) involves four Grassmann derivatives acting on the
delta function,

1
40

Therefore it vanishes at the coincident points due to the deficit of Grassmann derivatives.

GEP(112) = ——= (D)2 (D)% (21 — 22)02 (uy, u2) . (4.27)

By the same reason vanish similar tadpole diagrams with more vector legs outgoing from
a single point.
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Figure 2. Tadpoles and hypermultiplet self-energy diagram.

The diagrams on figure 2b), 2¢) vanish because of the properties of harmonics. Indeed,
the hypermultiplet propagator (3.55) has six Grassmann derivatives which are necessary
to kill all Grassmann variables of the Grassmann delta function,

20°(01 — 02)

(D)D) (D s
(u] uy)

m ) e = —16(u] Uy ) uy=uz = 0. (4.28)

(H=(2)
The similar identity can be obtained for the w-hypermultiplet propagator (3.56) which is
responsible for the ghost field contribution depicted in figure 2b).

The hypermultiplet self-energy diagram requires a more careful consideration. Up to
a numerical factor, it is given by

Tgg ~ / A dcS gt (g (2) S (DY) D21 — )02 (1, ua)

20 (21 — 2)

< (DY) (D)D) T (4.29)

1 (2)
Now we restore the full superspace measure and shrink down the 6-loop using the identity
5°(01 — 02) (D) (D)2 (D 126 (21 — 22) = —16(uf w2 (uf u )26% (1 — 22) . (4.30)

We have exactly six Grassmann derivatives for this identity. As a result,

ufuy)
Lyq ~ /d3x1d3x2d69du1du2 q+(x1,9,u1)(j+(x2,9,u2)( }'_ 3)6( 22) (uy, up)
(uy uy)
1 1
X 563($1 — 562)563(562 — 561) . (431)

(wfuz) 5(=2.2)
(ufuz)
ous due to the problem of coincident harmonic singularities. But this problem is resolved

In principle, the harmonic distribution (u1,ug) in (4.31) is potentially danger-
here by passing to the analytic subspace and using the resulting (D*1)? operator to pro-
duce extra harmonic factors,
(D) a* (2,0,u1) = (ufuy )*[Dy) (ufug)? = 4Dy Dy (uf uz ) (ug uz)
+4(D(01))2(ufu5)2]q (,0,u7). (4.32)

The factor (ujuj)? in the r.h.s. of (4.32) cancels the denominator of the harmonic distri-
bution in (4.31) and gives zero due to the identity (ujug)0=22?) (uy,u2) = 0. As a result,
the hypermultiplet self-energy contribution vanishes, I';z = 0.
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5 N'=3 supersymmetry with central charges

The N'=3 superalgebra without central charges is generated by the operators (A.10) with
the anticommutation relations (A.12). In this section we shall study an extension of this
superalgebra by the central charge operators Z%. The relations (A.12) are replaced by the

following ones
{QF,QF} = —i(e"&! +"9)dap — geap(e" 2 +- M2 4 S Z* + 2N, (51)

The operators Z% commute with all other generators except those of the R-symmetry
SU(2) algebra. We will show that just this modified N'= 3 superalgebra is inherent in the
massive hypermultiplet model, in analogy with the four-dimensional case [10, 28, 29].

5.1 Massive hypermultiplet model
Let us consider the Abelian version of the ¢g-hypermultiplet model (2.44)

Sn= [ d0gH DT 4V (52)
with the background gauge superfield given by
Vot = 3(9++)2u;uj_Zij , 7V = 71" = const. (5.3)
One can easily find the relevant bridge superfield g,
Qo = 301 0%, uy ZM 4+ 070 2N — 00w 28— 2(00) s 2R (5.4)
as a solution of the equation
D LVt = e theto, (5.5)

Now, wusing the relations (2.22), we obtain the connections for the covariant

spinor derivatives

3 g g I T R
Dy = Dy + Vga Via = 50 24 + 5042, (5.6)

(Ve
These derivatives satisfy the following anticommutation relations
{Dg,ﬂ)gl} = i(alksjl + 5118]]“)3&5 + §€a5(€ZkZﬂ + ik gt 4 it zik Ele’k) . (5.7)

The original supercharges (A.10) do not anticommute with (5.6). However, one can define
the modified supercharges

- . iy U R
QY = QY - Vih = QY — 5087, - 5017 (5.9

so that Q¥ anticommute with (5.6), i.e. {QQ,D?} = 0. One can easily check that the

operators Qf{ satisfy the anticommutation relations of N'=3 superalgebra with central
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charges (5.1). The central charge operators are realized as the multiplication by the con-
stants Z%. It is worth noting that these constant central charges explicitly break the
R-symmetry SU(2) down to U(1)C SU(2).

It is a non-trivial task to show that the equations of motion in the model (5.2) lead
to the mass-shell condition for the hypermultiplet superfield ¢*. To this end we introduce
the following notation

ARE STV A I A S T A AR Al (5.9)
and
vttt =D+ Vi, v =D +V; T, (5.10)
where
Vo =D T Qo=20"T0""Z " +4(00°)*Z " —40-6°Z2° + (6~ )*Z"T. (5.11)

The equation of motion in the model (5.2) has the following important corollaries
Vitgt =0, = (Vv )%"=0, = (D)*V )¢ =0. (5.12)
Hence, each operator from the set
(DFDY(VTT)?, (DFAVTRDT)H(VTT)?, (DFAVTT)? (513)
annihilates the superfield ¢* on-shell. Here DY = D + 2% — 1z-=¢f+ — 1Zz++0,~.

Based on the important identity for these operators

1 - 1 _ -
T (DTPDYAV )2 4 Lo (D)W )A(DT) (V)

1 1 .
+E(D++)2ZO(V__)2 =0+3529Z;, (514)

which holds in application to the analytic superfields, we derive the mass-shell condition
for the hypermultiplet superfield,

1 ..
(O4+m?)gT =0, m?= 52" 2% (5.15)

Thus we have demonstrated that the model (5.2) does describe the massive hypermulti-
plet model with the mass squared being equal to the square of the central charge operators.
All these considerations are analogous to those in the four-dimensional g-hypermultiplet
model. Minor complications stem from the fact that in the three-dimensional case the
central charge Z% has SU(2) indices. It is obvious that such a central charge indeed breaks
the SU(2) R-symmetry of the N'=3 superalgebra down to U(1).

The propagator of the massive hypermultiplet can be easily deduced from the full
hypermultiplet propagator (3.45) by choosing the background superfield strengths to be
constant, W4 = Z4,
690(2)—90(1)59(Z1 —2)

( + +)3 ’

1 1 .

GV U12) =~ 57 (D (DD BN 4320~ 2V )
172

(5.16)

480+ m2 (M (2) 6y

where the mass m is defined in (5.15).
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5.2 N=3 SYM as a quantum correction in the massive hypermultiplet model

It is well known that the standard Chern-Simons action appears as a result of computation
of the one-loop two-point diagram with a massive fermion inside and two vector fields on
the external legs [9]. Naively, one could expect that the N'=3 supersymmetric version of the
Chern-Simons theory (2.32) can also be derived from the massive hypermultiplet two-point
function of the form depicted in figure la. Surprisingly, such a computations in the N'=3
supersymmetric theory yields the N=3 SYM action rather than the Chern-Simons one.

Indeed, consider the model of massive g-hypermultiplet interacting with the back-
ground Abelian gauge superfield VT,

Shypim = /dC(4)q/k(D++ + VO++ + V++)q+, (5.17)

where V; is given by (5.3). The action (5.17) is invariant with respect to the following
Abelian gauge transformations

SVt = DN, 8¢t =N, 877 = -\, (5.18)

A being an analytic superfield gauge parameter. The formal expression for the massive
hypermultiplet two-point function is given by

Ty = / d¢( Ve, VG ARV )G 2V (1), (5.19)

i
2
where the massive propagator is defined in (5.16). Subsequent computations are rather
similar to those performed in subection 4.1 for the massless hypermultiplet, modulo com-
plications related to the fact that the expression for the massive hypermultiplet propagator
is more involved as compared to the massless one. As a result, we obtain

11

1 1
— = d3 d69d [/ 9 DO 2[/ — 9 /dsk‘
2 (271')6 / p U (p’ ?u)( ) ( b, ’u)

k2 —m?2 (k+p)2 —m?2’
(5.20)
Computing the momentum integral at zero momenta p, we deduce the local part of the

Iy =

two-point function in the form

_ 1 9 —— 0N2y/++
F2_167Tm d’zdu V= (D7)*VTT =

1

16mm

/dC(4)W++W++. (5.21)

As a result, we obtain the N'=3 SYM action as a quantum correction in the massive
hypermultiplet model.

The reason why the Chern-Simons term does not appear becomes clear in the com-
ponent fields formulation. The hypermultiplet superfield ¢* contains the spinor 1!, which
is a doublet of the SU(2) R-symmetry group. That part of the massive hypermultiplet
action (5.17) which involves the spinor field ¢, interacting with the vector field is given by

1 Tia Tia '
So=3 [l iDar] + 5 Zis0l). (522
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where Dyg = 0ag+iAqg. One can choose the frame with respect to broken SU(2) rotations
(acting on the doublet indices) in such a way that the central charge matrix takes the

~ m 0
7t = . 5.23
J ( 0 —im) ( )

The spinors ¢} and 12 decouple from each other and the action (5.22) can now be rewritten

following form

as a sum of two standard actions of the massive 3D spinors with the opposite masses,
Sy = St m] + S[y?, —m], (5.24)

S[p,m] = / Br(P*Dapth® — mip®ay) . (5.25)

i
2
Each of the spinors in (5.24) makes the same contribution to the one-loop two-point func-

tion, modulo the sign (see, e.g., [9])

1
48m|m)|

oA, m] = = [ ey A" AP +

& |m|

/ &3z Fpp F™ (5.26)

where I, = Om A, — OnAy,. Therefore the Chern-Simons terms cancel each other in the
full two-point function for the action (5.24) and so the leading contribution is given by the

Maxwell term,

1
TofA,m] + T, =] = 5= / B By F™ (5.27)

The action (5.21) is none other than a supersymmetric generalization of (5.27).

The absence of the Chern-Simons term in the hypermultiplet low-energy effective action
can be also understood from simple parity reasoning. Indeed, the hypermultiplet classical
action (2.44) is even with respect to the P-reflection while the Chern-Simons one (2.32) is
odd (see [6] for details). Since there are no any divergences in the one-loop computation
(which, if existing, might produce an anomaly), the resulting hypermultiplet effective action
should be also P-even. Hence, the Chern-Simons term cannot occur in the hypermultiplet
effective action.

5.3 Hypermultiplet self-interaction induced by quantum corrections

It is known that the quartic hypermultiplet self-interaction (2.46) appears as a leading
quantum correction in the model of N'=2, d=4 massive hypermultiplet interacting with
the dynamical Abelian gauge superfield [10]. In this section we will show that a similar
phenomenon takes place in the N'=3, d=3 gauge theory too.

The classical action of the model under consideration is given by

Scs,Ab + Shyp,m s (5.28)
where Scg ap is the Abelian Chern-Simons action,

ik ,
Scs.ab = -5 d¢Vy (5.29)
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Figure 3. Four hypermultiplet contributions.

while Shyp 1 is given by (5.17). The quartic hypermultiplet self-interaction (2.46) appears
from the local parts of the diagrams depicted in figure 3. Given the propagators for
the gauge superfield (3.54) and for the massive hypermultiplet (5.16), we represent these
contributions as follows

rd — _i / d¢ac M ack M acVa gt )7 (3)gT (4)

xGID (12657 23)GEV BIHGTP (), (5.30)
B _ —i / dc{VdeS Ve Va1t @)t (3)aT (4)

<GP ARG ALY BAGET (). (5.31)

Further computations for I'{ and I'? follow the same line. Therefore we consider in detail
only computation of T'{.

First, we do the integration over d(§74) and d(ﬁfﬁl) using the analytic delta-function
in the gauge superfield propagator (3.54) and integrate by parts with respect to one of the
(DY)? operators,

T [ac0acNqr (0)a @GRV (1) [(D)at @)D P () S @)
(5.32)
Next, we have to substitute the massive hypermultiplet propagators (5.16) into this expres-
sion. It is important that for deriving the contribution of the form (2.46) it is sufficient to
take into account only the following term in the massive hypermultiplet propagator (5.16)

207 (21 — )

1 1
G%J)(lp) ~ D++) (D(l)) (u+u+)3 (5'33)
172

1_6|]+m2( (1)) (D)

All other terms in the propagator give rise to higher-order contributions involving deriva-
tives. Substituting (5.33) into (5.32) and restoring the full superspace measure, we obtain

1 59(21 — 22)
OO+ m2) (ufug)?
% (DY) 2qH (1)(DG)) %0 (2)(DY))2a* (1)(Dy) 2D ADE)?

% 1 59(22 — Zl)
D@ +m?) (uzu)?®

A Z7'l'2 9
= yTE] d? 21 d° zpduy dus G (2)

(5.34)
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In this expression, every derivative DY acts on everything to the right of it. Therefore,
there is plenty of terms with the derivatives D distributed in different ways among them.
However, a non-trivial result can be generated only by those terms where the operator
(DY)? is present as a whole. For these terms one can apply the identity (4.4) to end up
with only one 0-integration. Two other such operators will produce the box operator by
the rule (A.21). As a result, we are left with the following expression

472 duidu 1 1
4 = /d3 dBrydto—1—2 83 (21 — 29)———— 83 (29 —
4 L2 10 22 (ufu;)Q OO + m?2) (z1 $2)D+m2 (z2 — 1)
xq"(2)q" (2)(D))?[at (Vg™ (1)) (5.35)

Here the term in the second line depends on different z’s and u’s, but on the same 6. Next,
we pass to the momentum space and compute the momentum integral in the local limit,

d3p im?
—_— = 5.36

/pQ(pQ —m2)2 m3 (5.36)
thus arriving at

Iy = 312 /d Zi(ufu;—)Qq (2,u2)q" (2,u2) (D)) *[q" (2,u1)g™ (2, u1)] - (5.37)

The integrand in (5.37) contains a harmonic distribution. We need to single out a local
part in this expression in order to get the contribution of the form (2.46). For this purpose

we follow the same line as in [10]. We insert the operator D° = [V™+ ¥ ~~] under the
integral and consider only the contribution from the term V*+*+V~~ in this commutator,”

™ dulduQ _ 1 ~
Ff - 2m3 k2 /dgz (u+u+)2 q+(zau2)q+(zau2)§D(01)(D(01))2[q+(Z,u1)q+(2,’u,1)]
12
™ dulduQ -~
= k2 /d%m q" (2, u2)q" (2, u2)
12

XV (D)@ (z,u)g ™ (z,w)]. (5.38)
We integrate by parts with respect to V' and use the standard equation for the harmonic
distributions [4],

1
+t 522
O Gafug D0 0 (ur, ua) (5-39)

which allows us to perform the uy integration using the harmonic delta-function,

s _ _ _
Ff = W/d3xd69duq+q+(v )Q(DO)Q[Q+Q+]
T

= _7167”3]{;2 /d<(4)q+q+(D++)2(D0)2(V)2[q+q+] ‘ (5‘40)

"The second term V~~ V7T in the commutator contains the operator V' which hits the hypermultiplet
superfields, resulting in the free massive hypermultiplet equations of motion (5.12). Therefore, such terms
do not contribute to the on-shell effective action. Moreover, such terms are non-local with respect to the
harmonic variables while here we are interested in the local contributions to the effective action.
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From the operator (V~7)? we need only the term (V; )2, where V; ~ is given by (5.11).
Such a term yields

(DTH2(DY)%(Vy )% = 32m?. (5.41)
Finally, we find
2T _ 1
Hj=-—>5 dCqtqtqtat . (5.42)

Onme can check that the computation of the second diagram ' on figure 3 yields the
same result. Therefore, the final answer for I'y is as follows
- — A7 /dg(‘4)q+q+q+q+ _ (5.43)
mk?
It is known that in the A'=2, d=4 hypermultiplet model such a quartic self-interaction
results in a sigma model for the scalar fields with the target hyper-Kahler Taub-NUT
metric [4, 13]. The self-interaction (2.46) gives rise to the same sigma model, but in the
three-dimensional space-time.

6 Discussion

In this paper we laid down a basis for the systematic study of the quantum aspects of
three-dimensional N'=3 supersymmetric gauge and matter models in harmonic superspace.
We worked out the background field method for the general A'=3 Chern-Simons matter
theory. It is a powerful tool for finding the quantum effective actions directly in N'=3, d=3
harmonic superspace, preserving manifest gauge invariance and N'=3 supersymmetry at
each step of the quantum calculations. The usefulness of this method was illustrated by a
simple proof of the A'=3, d=3 nonrenormalization theorem. Furthermore, we derived the
propagators for the massless and massive hypermultiplets as well as for the Chern-Simons
fields in harmonic superspace and employed them to compute the leading terms in the
quantum two-point and four-point functions.

The derivation of propagators and the calculation of quantum diagrams in N'=3, d=3
harmonic superspace closely mimic the analogous considerations in the four-dimensional
N'=2 harmonic superspace approach [3]. However, in contrast to the four-dimensional case,
there are no one-loop UV divergences in N'=3, d=3 harmonic superspace, and all diagrams
are finite. Only IR singularities may appear in the massless hypermultiplet theory, but
they can be avoided either by using massive hypermultiplets or by doing all the calculations
within the background field method, where all propagators are effectively massive.

The massive hypermultiplet model has some new features in comparison with the four-
dimensional theory. As is well known [30], the massive hypermultiplet describes a BPS
state, i.e. it respects supersymmetry with a central charge equal to the hypermultiplet
mass. The N'=2, d=4 superalgebra has a central charge (complex or real) which is a
singlet with respect to the R-symmetry group. Therefore, it breaks the U(2) R-symmetry
group down to SU(2). In three dimensions, this picture is slightly different. The N'=3,
d=3 superalgebra has a central charge which is a triplet, breaking the SO(3) ~ SU(2)
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R-symmetry group down to SO(2) ~ U(1). For this reason, the massive hypermultiplet
propagator has a more complicated form (5.16) as compared to the four-dimensional case.

A new feature arises when considering quantum contributions in the massive charged
hypermultiplet model. In the N'=0 analog of such a model, i.e. three-dimensional elec-
trodynamics, a single massive spinor generates the Chern-Simons action in the one-loop
two-point quantum diagram [9]. A similar feature is pertinent to the N=1 and N'=2
models [31]. However, the one-loop two-point diagram in the A'=3 massive charged hyper-
multiplet theory produces the N'=3 super Yang-Mills action rather than the Chern-Simons
one as the leading quantum correction. This may be explained by resorting to a parity argu-
ment: the A'=3 hypermultiplet is parity-even while the Chern-Simons term violates parity.
Since no anomaly can appear, the Chern-Simons term is prohibited in the hypermultiplet
low-energy effective action.

Another interesting feature of quantum computations is related to the one-loop four-
point function with four external hypermultiplets in the model of a massive charged hyper-
multiplet interacting with a dynamical Chern-Simons field. We showed that these quan-
tum diagrams produce, as the leading correction, a quartic hypermultiplet self-interaction
which in components yields the Taub-NUT sigma model for the scalar fields. The same
phenomenon was observed in the four-dimensional case [10].

Let us outline some further problems which can be studied and hopefully solved based
on the results of the present work. Its natural continuation is the study of the N'=3
superfield low-energy effective action in the hypermultiplet and the Chern-Simons theory.
So far, there have not been any attempts to constructing the effective actions in these
theories. It is worthwhile to compare this situation with the N'=2, d=4 supersymmetric
models, in which the hypermultiplet and gauge superfield effective actions have been studied
to a large extent (see, e.g., [19, 32]). Even more tempting is the application of our quantum
techniques to the N'=6 and N'=8 supersymmetric ABJM and BLG models, in order to
describe the quantum-corrected low-energy dynamics of M2 branes in superstring theory.
An important related question concerns the composite operators for the hypermultiplet
superfields in the ABJM theory. Such operators are relevant for testing the AdS;/CFTj3
version of the general “gravity/gauge” correspondence.
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A N'=3 harmonic superspace conventions

Three-dimensional notation. We use the Greek letters «,3,... to label the spino-
rial indices corresponding to the SO(1,2) ~ SL(2, R) Lorentz group. The corresponding
gamma-matrices can be chosen to be real, in particular,

<70>§:—wz:<(1)‘01>, <wl>§:asz<3_01>, (72)§=01=<(1)(1)>- (A1)

They satisfy the Clifford algebra
(""" ==20"", ™" = diag(1, -1,-1), (A.2)
and the following orthogonality and completeness relations
(s =20 (Y)ap(rm)?T = (6007 + 0207) - (A.3)

We raise and lower the spinor indices with the e-tensor, e.g., (Ym)ag = aag('ym)g,, €12 = 1.
The products of two and tree gamma-matrices are given by

(Y™ME(™)E = =™ — ™ ()5 (A.4)
(Y™EA™MGAP)E = =™ (AP)5 + P (Y)E — P (Y™ + e™PSE (A.5)

where 919 = €912 = 1.
The relations (A.3) are used to convert any vector index into a symmetric pair of

space-time ones, e.g.,

1
2% = (ym)*2™, ™ = S (7 )apr™,
m 1 «
Oap = ("")apOm,  Om =5 (¥m)* Dag, (A.6)
so that
Oma" = 0F,  apa? = 0007 + 8585 = 20487 . (A.7)

Superspace and harmonic conventions. The R-symmetry of A'=3 superspace is
SO(3)r ~ SU(2)r. Therefore we label the three copies of Grassmann variables by a pair
of symmetric SU(2) indices i, j, i.e., 0% = 6'. Thus the N'=3 superspace is parametrized
by the following real coordinates in the central basis

2= (@™ 09), T =a", 0 =0;,. (A.8)
The partial spinor derivatives are defined as follows

0

Kl _ <8 sk sl
5000 05 = 0y 6(i5j) . (A.9)
(0%
The covariant spinor derivatives and supercharges read
. ) ) ) .
DM = 05359 M= —i0"Pg,,. A.10
e 89% +1 af s Qa 59;‘3} ? af ( )
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They satisfy the following anticommutation relations

{Dg,Dgl} = i(e®el 4 1R, 5, (A.11)
{QF, QK'Y = —i(e%e + ") dap (A-12)

We use the standard harmonic variables u: parametrizing the coset SU(2)g/U(1)r [4].
In particular, the partial harmonic derivatives are

ottt = uji_, 0~ = u;i_“ M=, 0 7] = uji — ;i_ (A.13)
ou ou, ou Ou,
The harmonic projections of the Grassmann N'=3 coordinates and spinor derivatives are
defined as follows

03’ . (aiJr’@;*’@g) ( ] Hg,uz u; Hg,uz u; alj)a
DY — (D3*. Dy~ DR) = (ufuf DY uu; DY wfu; D). (A4)

The analytic subspace in the full N'=3 superspace is parametrized by the
following coordinates:

CA = (xA 59++,9(o)u u, )? (A15)
where
2% = (y) P} = 2% 4 i(0°T 05 4 90, (A.16)
The harmonic and Grassmann derivatives in the analytic coordinates are:
0 0
++ _ g+ | 9ipttag0BgA ++ 0
D —8 +220 O‘H aa6+0a aeoa +29 QW’
0 0
— 9= o:pa——pn0BaA — 0
=07 =210 0705 + 07 5900 + 20 a89++a,
0 0
0_ 40 ++ —— ++ H——1_ PO
D°=09"+20 O‘89++a—20°‘ 5o [D™", D "] =D", (A.17)
0 0 1 0
++ _ -— _ nB—— A 0 _ 03
Da = 890‘77 5 Da = W + 2i0 aaﬁ, Da == 58900‘ + 10 Qw,
(A.18)
where Bfﬁ = (y™ )aﬁ e . They satisfy the following relations:
[DFF, DEF) =200 | [D°, DEF] = £2DEF [D*£, D0 = D (A.20)
Some useful identities involving these derivatives are as follows,
(D°)?DY = —iD%9,5, DY(D°)?=iD%9,5, (D°)*=0. (A.21)

The integration measures over the full and analytic harmonic superspaces are de-
fined by

p—- —%dgzc(DJrJf)Q(D__)Q(DO)Z, (A.22)

e = idmduw;ﬁw%% d”zdu = —§d<<*4><D++>2, (A.23)
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where (D11)2 = DY+ D}+ | etc. With such conventions, the superspace integration rules
are most simple:

/dgl’f(x) :/d92(9++)2(9")2(9°)2f(w) :/dg(—4)(9++)2(90)2f(“) (A.24)

for some field f(x).
We denote the special conjugation in the N'=3 harmonic superspace by ~,

(W) =u, (@f) =2k, (") =637, (63)="0a. (A.25)

It squares to —1 on the harmonics and to 1 on other superspace coordinates. All bilinear
combinations of the Grassmann coordinates are imaginary

P

(027 09)] = =057 05, [(07)2]=—(07)%, [(69)%]=—(0°)*.  (A.26)

The conjugation rules for the spinor and harmonic derivatives are

(DV®) = —D2%®, [(DY)2®] = —(D°)?®, (D++d)=D"" 0, (A.27)

where ® and ® are even superfields.

P

The analytic superspace measure is real, d¢ (=4 = d¢ (=4 while the full superspace
measure is imaginary, d%z = —d°z.
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